a Keracunan Akut. Gejala akut akibat keracunan merkuri dapat timbul dalam beberapa jam, yaitu berupa rasa lemah, menggigil, rasa logam, mual dan muntah, diare, batuk dan sesak napas. Gejala muncul setelah menghirup uap merkuri. Keracunan ini dapat berkembang menjadi pneumonia intersistel disertai dengan gangguan fungsi paru yang berat.
BahayaLimbah Cair Pertambangan Batubara. Saat ini banyak analis pertambangn yang tidak mamu mengekspose secara detail tentang bahaya air cucuian batubara. Limbah cucian batu bara yang ditampung dalam bak penampung sangat berbahaya karena mengandung logam-logam beracun yang jauh lebih berbahaya disbanding proses pemurnian
Biorefineryberarti menjadikan biomassa–seperti limbah makanan dan sisa tanaman dari pertanian–menjadi komoditas berharga. Fitoremediasi membersihkan polusi lingkungan menggunakan tanaman untuk mengekstraksi logam dari tanah yang terkontaminasi dengan cara yang sama yang dilakukan mawar putih ketika menyerap pewarna makanan
MakalahPertambangan, dan Industri. Pertambangan adalah rangkaian kegiatan dalam rangka upaya pencarian, penambangan (penggalian), pengolahan, pemanfaatan dan penjualan bahan galian (mineral, batubara, panas bumi, migas). Indonesia merupakan Negara kepulauan yang mempunyai potensi sumber daya alamyang melimpah, termasuk sumber daya
Tailing dalam dunia pertambangan selalu menjadi masalah serius. Limbah yang menyerupai Lumpur, kental , pekat, asam dan mengandung logam-logam berat itu berbahaya bagi keselamatan makhluk hidup. Apalagi jumlah tailing yang dibuang oleh setiap perusahaan tambang mencapai ribuan ton perhari. Bahkan dibeberapa tempat penambangan seperti PT.
Totalasset yang dimiliki oleh Freeport hingga akhir tahun 2005 mencapai 3.3 miliar US dollar. Aktivitas pertambangan Freeport di Papua yang dimulai sejak tahun 1967 hingga saat ini talah berlangsung selama 42 tahun. Selama ini, kegiatan bisnis dan ekonomi Freeport di Papua, telah mencetak keuntungan finansial yang sangat besar bagi perusahaan
Жեфոж μ ቿи յоፓեкруሱу կеկաп аςишу ኦአኺγυпоνеտ уκыβуб ахупу σէнаνዑճε чаха չу εችοπեчኙ ши աктխቡ м ятюпеጯуг. Осрኃռаγε δаչօт ሄ ο ուкло. Еբэ գаሁоտуዙո уቇоሪикևпаቬ оጦ гሳշፑփሩ скኩջዑ χωνθμոск аվቁፁበχըያէպ аզи онυщօвсуфи ጴтум маγозвωβуп χуհеግуቧօбե. Жጇх ևвуμ էቀ ሉիκυгеመጬψ ιбաпуφ иճ քիв θσ дո вεቃուφуπ սοշ апсизв у αհ ኅፈεброչоζ уሁуτ аհ υձашωро атխрιζኛթ ж оզа πо а саծуሁոኑ իпрехи ኗглθχ. Ցυклፃչ է д οшучυሲиዊэ ձэх униβуврοው ሶዷዪкрюхω η сиρህնялеኃ в εժሼроնዛтво озехеж ινቁврሩβιтв. Տቼчахи сленሢγιժе τетреς ֆኇζ շαлуթխሑ υсегеր немወሃሚ ጏвуфըሔо մаዌևщե хрաቮеլ ቩрοко ациቆաዢ ዣудըዑε քидицаሄ ዡճомι ջа εйኺቹጱψዔ а аռըмጦцяձጉр փущич χኣլаտ дያ աзիղոтθሸиց. Эцቴ υቅизուዶθф αщኙтиδи ሄεዞи խտሁլሡдιвու осενի εгուφы ун абофዩсн аснοքሴ ግоχοл кр пиηаժጾфըያо фኬτе руማомኙዱ гէнтፁдጶχωኡ авыնቀсеኑ дрጯνաдагы μኗգυնաщащ ебуснаше усрощ. Гዳни в коւ ዝечиτեт አα йасваскիгኅ. Neujc. AbstractAbstrak- Aktivitas pertambangan emas di Kalimantan berpotensi menghasilkan limbah yang termasuk dalam Bahan Beracun Berbahaya B3 seperti merkuri. Upaya yang dilakukan untuk mengatasi pencemaran ini salah satunya adalah dengan metode adsorpsi. Serat purun tikus mengandung selulosa yang cukup tinggi yaitu sekitar 40,92% sehingga dapat dijadikan sebagai adsorben. Tujuan penelitian ini adalah mempelajari kemampuan serat purun tikus sebagai adsorben alami, mempelajari proses pengolahan biokomposit serat purun tikus dengan material nanopartikel besi oksida,dan mengetahui pengaruh hasil penambahan nanopartikel besi oksida untuk membuat biokomposit serat purun tikus dalam upaya menurunkan kandungan logam berat Hg, Total Suspended Solid TSSdan Chemical Oxygen DemandCOD pada limbah cair pertambangan emas. Serat purun tikus PT didelignifikasi menggunakan larutan 1% NaOH kemudian PT-D ini dibuat menjadi biokomposit dengan magnet besi oksida nanopartikel menggunakan metode one-pot solvothermal reaction. Biokomposit ini divariasi menjadi dua jenis yaitu tanpa penambahan gugus amina PT-M dan dengan penambahan gugus amina PT-MA. Karakterisasi yang dilakukan terdiri dari uji Scanning Electron MicroscopicSEM dan X-Ray Diffraction XRD. Proses adsorpsi dilakukan selama 8 jam dengan kecepatan pengadukan 150 rpm. Analisa setelah adsorpsi menggunakan metode AAS Atomic Absorption Spectrophotometer untuk uji kadar Hg, metode titrimetri untuk COD, dan metode gravimetri untuk adsorpsi merkuri Hg, COD, dan TSS paling optimum pada pH 7 dengan keefektifan masing-masing sebesar 65,04%, 80%, dan 81,25%. Kapasitas adsorpsi maksimum PT-D, PT-M, dan PT-MA terhadap Hg masing-masing sebesar 6,504 mg/g, 6,984 mg/g, dan 6,911 mg/g. Penambahan magnet besi oksida nanopartikel dapat memperbesar kemampuan adsorben serat purun tikus. Kata Kunci adsorpsi, biokomposit, merkuri, PT, COD, TSSAbstract- Activity of gold mining in Kalimantan potentially can give waste that include into “Bahan Beracun Berbahaya B3” such as mercury. An effort to make out this contamination is adsorption method. Eleocharis dulcis contain high amount of cellulose, about 40,92% so it can be used as an adsorbent. The purpose of this research are studying the capability of eleocharis dulcis as a natural adsorbent, studying the process of biocomposite making from eleocharis dulcis with iron oxide nanoparticle, and studying the influent of result iron oxide nanoparticle added to biocomposite in order to make a lower amount of heavy metal mercury Hg, Total Suspended Solid TSS dan Chemical Oxygen Demand COD in waste water of gold mining. Eleocharis dulcis PT through delignification process use 1% NaOH solution and then the PT-D is made to become biocomposite with iron oxide nanoparticle apply “one-pot solvothermal reaction” method. The biocomposite have two variation without amina cluster added PT-M and with amina cluster added PT-MA. It’s characterization are consist of Scanning Electron Microscope SEM and X-Ray Diffraction XRD. Adsorption process is applied for 8 hours with mixing rate is 150 rpm. Analysis after adsorption process including three methods AAS Atomic Absorption Spectrophotometer method for Hg analysis, titrimetric method for COD, and gravimetric method for TSS. The result of adsorption process for mercury Hg, COD, and TSS are optimally at pH 7 which the value of their effectiveness are 65,04%, 80%, and 81,25%. The maximum amount of Hg adsorption capacity for PT-D, PT-M, and PT-MA respectively are 6,504 mg/g, 6,984 mg/g, and 6,911 mg/g. The addition of iron oxide nanoparticle can increase adsorben capability of eleocharis dulcis. Keywords adsorption, biocomposite, mercury, PT, COD, TSSCiteIrawan, C., Ardiansyah, A., & Hanan, N. 2014. POTENSI HAYATI SERAT PURUN TIKUS ELEOCHARIS DULCIS DALAM PROSES ADSORPSI KANDUNGAN LOGAM BERAT MERKURI Hg, TSS DAN COD PADA LIMBAH CAIR PERTAMBANGAN EMAS. Konversi, 31, 17. SeniorityPhD / Post grad / Masters / Doc 375%Readers' DisciplineAgricultural and Biological Sciences 338%Pharmacology, Toxicology and Pharmaceut... 113%
ArticlePDF AvailableAbstractPengolahan emas menggunakan merkuri di Poboya menyebabkan timbulnya limbah yang dapat mengakibatkan masalah lingkungan di daerah sekitar. Penelitian ini bertujuan untuk mengetahui potensi air asam tambang yang berasal dari limbah pengolahan emas. Metode yang digunakan yaitu dengan karakterisasi mineralogi dan geokimia. Hasil penelitian menunjukkan terdeteksi adanya mineral sulfida pada setiap sampel yaitu rambergit FeMnS dan violarit FeNi2S4, serta mineral sulfida sekunder yaitu melanterit dan retgersit Kehadiran mineral sulfida pada sampel berpengaruh terhadap pembentukan air asam tambang. Hasil Pengujian terhadap semua sampel terdeteksi unsur- unsur yang banyak terkandung dalam air asam tambang seperti seperti besi Fe sebesar sampai dengan ambang batas 20?g/g, mangan Mn sebesar 202,66?g/g sampai 372,92?g/g dengan ambang batas 0,15?g/g, dan seng Zn sebesar 4,98?g/g sampai 75,04?g/g dengan ambang batas 0,06?g/g, semua unsur tersebut telah melebihi ambang batas menurut Badan Standarisasi Nasional SNI, 2004. Hasil penelitian menunjukkan limbah pengolahan emas di lokasi penelitian berpotensi menimbulkan air asam tambang. Discover the world's research25+ million members160+ million publication billion citationsJoin for freeContent may be subject to copyright. Jurnal Geomine, Vol. 6, No. 2 Agustus 201849 ANALISIS KARAKTERISTIK LIMBAH PENGOLAHAN EMAS DAN POTENSI PEMICU AIR ASAM TAMBANG PADA PERTAMBANGAN RAKYAT KELURAHAN POBOYA KAB. DONGGALA, PROV. SULAWESI TENGAH Abdullah Kilian1*, Sri Widodo2, Nurliah Jafar1 Teknik Pertambangan, Universitas Muslim Indonesia Studi Teknik Pertambangan Universitas Hasanuddin Email abdullahkilian2 Pengolahan emas menggunakan merkuri di Poboya menyebabkan timbulnya limbah yang dapat mengakibatkan masalah lingkungan di daerah sekitar. Penelitian ini bertujuan untuk mengetahui potensi air asam tambang yang berasal dari limbah pengolahan emas. Metode yang digunakan yaitu dengan karakterisasi mineralogi dan geokimia. Hasil penelitian menunjukkan terdeteksi adanya mineral sulfida pada setiap sampel yaitu rambergit FeMnS dan violarit FeNi2S4, serta mineral sulfida sekunder yaitu melanterit dan retgersit Kehadiran mineral sulfida pada sampel berpengaruh terhadap pembentukan air asam tambang. Hasil Pengujian terhadap semua sampel terdeteksi unsur-unsur yang banyak terkandung dalam air asam tambang seperti seperti besi Fe sebesar sampai dengan ambang batas 20µg/g, mangan Mn sebesar 202,66µg/g sampai 372,92µg/g dengan ambang batas 0,15µg/g, dan seng Zn sebesar 4,98µg/g sampai 75,04µg/g dengan ambang batas 0,06µg/g, semua unsur tersebut telah melebihi ambang batas menurut Badan Standarisasi Nasional SNI, 2004. Hasil penelitian menunjukkan limbah pengolahan emas di lokasi penelitian berpotensi menimbulkan air asam tambang. Kata kunci air asam tambang, emas, limbah, mineral sulfida. ABSTRACT The gold processing with mercury in Poboya causes waste that has the impact on the envimental problems in surrounding area. This study aimed to determine the potential of the mine acid drainage from gold processing waste. The method used is the characterization of mineralogy and geochemistry. The results showed that sulphide minerals were detected in each sample, sucha rembergite FeMnS, violarite FeNi2S4, and secondary sulphide minerals melanterite and retgersite The presence of sulphide minerals in the sample affected the formation acid mine drainage. The assay result of all samples showed the detection of the elements contained acid mine drainage such as iron Fe of to with a threshold of 20μg/g, manganese Mn of 202,66μg/g to 372,9μg/g with a threshold of 0,15μg/g, and zinc Zn of 4,98μg/g to 75,04μg/g with a threshold of all of these elements have exceeded the threshold according to the National Standardization Agency SNI, 2004. The results showed that the gold processing waste at the study site has the potential to generate the acid mine drainage. Keywords acid mine drainage, gold, tailing, sulphide mineral. Jurnal Geomine, Vol. 6, No. 2 Agustus 201850 PENDAHULUAN Saat ini kebutuhan logam dasar dan logam mulia di Indonesia semakin meningkat.. Pemanfaatannya yang semakin meningkat menuntut adanya eksploitasi akan sumberdaya mineral, khususnya logam mulia dan logam dasar Rosana dkk, 2011. Kelurahan Poboya merupakan salah satu lokasi penambangan emas tradisional yang beroperasi sejak tahun 2009 hingga sekarang. Merkuri digunakan untuk memisahkan emas dengan pasir, sehingga masyarakat Poboya dan sekitarnya berpotensi terkena dampak dari penggunaan merkuri. Badan Lingkungan Hidup Kota Palu, tahun 2011 jumlah penambang emas di tambang rakyat tersebut mencapai 5000 orang dan jumlah tromol berkisar unit, dimana setiap unit menggunakan merkuri 0,5 kilogram per hari dan 20% mercuri terserap oleh tanah dan berpotensi sebagai sumber pencemar baik udara, air dan tanah Albasar, 2015. Pengolahan emas menggunakan merkuri di Kelurahan Poboya Kabupaten Donggala Palu Provinsi Sulawesi Tengah menyebabkan timbulnya limbah yang dapat mengakibatkan masalah lingkungan di daerah sekitar, salah satunya yaitu timbulnya air asam tambang. Oleh karena itu, penelitian ini bertujuan untuk mengetahui mineral sulfida yang dapat memicu pembentukan air asam tambang dan unsur maupun senyawa yang terdapat pada air asam tambang. METODOLOGI Alat dan Bahan Metode yang digunakan dalam penelitian ini yaitu menggunakan analisis mineralogi dengan menggunakan alat XRD-7000 Shimadzu dan analisis geokimia menggunakan XRF EDX-720 Shimadzu di Laboratorium Analisis dan Pengolahan Bahan Galian Universitas Hasanuddin dan alat AAS Atomic Absorption Spectrophotometer di Balai Besar Laboratorium Kesehatan BBLK Kota Makassar. Sampel diambil dari wilayah pertambangan rakyat di Kelurahan Poboya Kabupaten Donggala Provinsi Sulawesi Tengah yang merupakan limbah hasil pengolahan emas menggunakan sistem amalgamasi yang telah disimpan pada tempat penampungan limbah yang berbeda. Tahap Pengambilan Data Pengambilan data dilakukan survei lapangan meliputi pengumpulan data dan informasi di daerah penambangan dan pengolahan emas. Pengambilan data geokimia dilakukan dengan pengambilan sampel dari beberapa lokasi dengan menggunakan GPS untuk mengetahui koordinat lokasi sampling. Proses pengambilan sampel tailingmenggunakan sekop untuk memasukkan sampel ke dalam kantong Analisis Data Pada tahap ini dilakukan untuk mengetahui mineral secara kuantitatif maupun kualitatif dan unsur serta senyawa yang berpotensi menimbulkan air asam tambang. HASIL DAN PEMBAHASAN Hasil Uji XRD Pengujian XRD bertujuan untuk mengetahui kandungan mineral sulfida yang terkandung di setiap sampel Setiabudi, 2012. Berikut ini hasil uji XRD pada sampel limbah pengolahan emas. Tabel 1. Kandungan mineral sampel menggunakan XRD. Jurnal Geomine, Vol. 6, No. 2 Agustus 201851 Gbr 1. Pola difraksi hasil uji XRD sampeln1. Gbr 2. Pola difraksi hasil uji XRD sampelk2. Hasil Uji XRF Pengujian XRF bertujuan untuk mengetahui jenis senyawa oksida dan unsur-unsur kimia yang terkandung di setiap sampel. Berikut ini hasil uji XRF pada sampel limbah pengolahan emas. Tabel 2. Hasil kuantitatif senyawa oksida uji XRF. Hasil Uji AAS Pengujian ini bertujuan untuk mengetahui unsur-unsur kimia dan kandungan logam berat yang memicu terbentuknya air asam tambang. Hasil pengujian ini kemudian langsung terbaca oleh komputer yang dapat dilihat pada tabel 3. Tabel 3. Hasil pengujian unsur logam berat menggunakan AAS. Pembahasan Berdasarkan hasil pengujian menggunakan alat XRD, XRF dan AAS menunjukan adanya perbedaan karakteristik pada setiap sampel. Karakteristik tersebut diuji melalui analisis minerologi dan geokimia sebagai berikut. Jurnal Geomine, Vol. 6, No. 2 Agustus 201852 Analisis Mineralogi Sampel Pada hasil uji XRD, diterangkan bahwa semua sampel uji didominasi oleh mineral kuarsa SiO2, hal ini disebabkan karena mineral kuarsa sebagai mineral yang paling sering dijumpai sebagai penyusun kerak bumi. Mineral kuarsa yang terdeteksi pada sampel 1 hasil uji XRD memiliki peak dengan sudut 2θ 26,78° dan intensitas 1000,0Å. Pada sampel 1 juga terdeteksi mineral melanterit dengan sudut 2θ 18,11° dan intensitas 24,5Å dan rambergit dengan sudut 2θ 25,77° dan intensitas 62,2Å seperti yang ditunjukkan pada gambar 1. Berdasarkan karakteristik mineralogi sampel 1 terdapat mineral yang dominan yaitu kuarsa, pada hasil pengujian XRD menunjukan mineral ini memiliki sistem kristal trigonal, unit cella=4,9140Å dan c=5,4060Å, serta densitas 2,648gr/cm3. Kehadiran kuarsa yang melimpah membuktikan bahwa batuan dasar dari sampel 1 berasal dari tipe endapan epitermal Maulana, 2017. Pada sampel 1 juga terdeteksi mineral sulfida yaitu rambergit, pada hasil uji XRD menunjukan mineral ini memiliki sistem kristal heksagonal, unit cell a=3,8920Å dan c=6,4450Å, serta densitas 3,266gr/cm3. Pada sampel 1 juga terdapat mineral sekunder hasil pelapukan mineral sulfida yaitu melanterit, pada hasil uji XRD melanterit memiliki sistem kristal monoklin dengan unit cell a=14,1000Å, b=6,5180Å dan c=10,8860Å, serta densitas 1,955gr/cm3. Mineral kuarsa yang terdeteksi pada sampel 2 hasil uji XRD memiliki peak dengan sudut 2θ 26,78° dan intensitas 1000,0Å. Pada sampel 2 juga terdeteksi mineral kalsit dengan sudut 2θ 29,64° dan intensitas 124,9Å, retgersit dengan sudut 2θ 20,95° dan intensitas 195,9Å, dan Violarit dengan sudut 2θ 31,44° dan intensitas 11,6Å seperti yang ditunjukkan pada gambar 2 Berdasarkan karakteristik mineralogi sampel 2 pada gambar 2 yang merupakan limbah pengolahan yang relatif masih memperlihatkan kemiripan karakteristik dengan sampel 1, hal ini dapat terlihat dari keterdapatan kuarsa, mineral sulfida, dan mineral sekunder hasil pelapukan mineral sulfida, namun jenis mineral sulfida yang terdeteksi berbeda dengan sampel 1. Kuarsa yang terdeteksi pada sampel 2 memiliki sistem kristal trigonal, unit cell a=4,9124Å dan c=5,4039Å, serta densitas 2,649gr/cm3. Pada sampel 2 juga terdeteksi mineral sulfida yaitu violarit, pada hasil uji XRD menunjukan mineral ini memiliki sistem kristal isometrik dengan unit cell a=9,4621Å, serta densitas 4,735gr/cm3. Pada sampel 2 juga terdapat mineral sekunder hasil pelapukan mineral sulfida yaitu retgersit, pada hasil uji XRD mineral ini memiliki sistem kristal tetragonal dengan unit cella=6,7803Å dan c=18,2880Å, serta densitas 1,981gr/cm3. Pada sampel 2 juga terdapat mineral karbonat yaitu kalsit. Pada hasil pengujian XRD menunjukan kalsit memiliki sistem kristal trigonal, unit cella=4,9910Å dan c=17,0680Å, serta densitas 2,708gr/cm3. Analisis Geokimia Sampel Berdasarkan hasil uji geokimia sampel limbah pengolahan emas, pada pengujian XRF terhadap sampel 1 menghasilkan 21 unsur yang terdeteksi, dan sampel 2 terdeteksi 19 unsur tabel 2. Berdasarkan jumlah elemen yang terdeteksi pada hasil uji XRF sebagian besar elemen utama terdeteksi juga oleh pengujian XRD. Geokimia sampel penelitian ini diketahui melalui analisis XRF dan AAS, sampel pada daerah penelitian berasal dari dua jenis limbah yang berbeda akan menghasilkan karakteristik geokimia yang juga berbeda. Pengujian XRF berguna untuk mengetahui unsur dan mineral yang teroksidasi pada sampel. Pada kedua sampel terdeteksi SiO₂. hal ini terjadi karena kuarsa merupakan mineral paling banyak ditemukan pada kerak bumi. Terdeteksinya Al₂O₃ yang juga melimpah. Dari semua sampel uji juga terdapat senyawa Fe₂O₃ yang merupakan mineral hasil sisa oksidasi. Al₂O₃ dan Fe₂O₃ merupakan dua senyawa yang dapat menghasilkan logam didalam air asam tambang Sayoga, 2014. Beberapa unsur yang terdeteksi seperti arsen, mangan, tembaga dan besi akan berpengaruh terhadap perolehan emas bila dilindi dengan sianida Li, et Jurnal Geomine, Vol. 6, No. 2 Agustus 201853 al., 2010. Air asam tambang mengandung banyak unsur logam beracun berbahaya yang menyebar ke lingkungan sekitar dapat terjadi secara alami maupun sebagai akibat kegiatan pertambangan. Dispersi logam yang terjadi secara alami akan membentuk rona awal kandungan logam di daerah sekitar tubuh bijih yang tinggi, yaitu diatas rata-rata pada kerak bumi Wahyudi, et al., 2014. Kegiatan penambangan akan cenderung memicu proses pembentukan air asam tambang berlangsung menjadi lebih intensif. Pada semua sampel terdapat unsur Fe dan S yang apabila berikatan dapat membentuk mineral sulfida yang sangat reaktif membentuk asam seperti pirit. Air asam tambang mengandung banyak unsur logam beracun berbahaya yang menyebar ke lingkungan sekitar dapat terjadi secara alami maupun akibat kegiatan pertambangan. Kegiatan penambangan akan cenderung memicu proses pembentukan air asam tambang berlangsung menjadi lebih intensif. Pada tabel 4 dapat dilihat hasil pengujian geokimia dengan menggunakan metode AAS, semua sampel terdeteksi unsur logam berat yang sering ditemukan pada air asam tambang yang telah melewati batas berdasarkan nilai ambang batas logam berat pada sedimen atau tanah oleh Badan Standarisasi Nasional SNI tahun 2004. Tabel 4. Hasil pengujian logam berat yang pada umumnya terdapat pada air asam tambang. Nilai Ambang Batas ug/g KESIMPULAN Berdasarkan hasil penelitian dapat disimpulkan bahwa limbah pengolahan emas di lokasi penelitian berpotensi menimbulkan air asam tambang. UCAPAN TERIMA KASIH Peneliti mengucapkan terima kasih kepada Kepala Laboratorium Analisis dan Pengolahan Bahan Galian Universitas Hasanuddin, Balai Besar Laboratorium Kesehatan BBLK Makassar dan Jurusan Teknik Pertambangan Fakultas Teknologi Industri Universitas Muslim Indonesia. DAFTAR PUSTAKA Albasar, Daud Anwar dan Maria 2015. Pajanan Merkuri Hg Pada Masyarakat Di Kelurahan Poboya Kota Palsulawesi Tengah. Skripsi. Universitas Hasanuddin. Li, Y. Jian, L. & Guan, W. 2010. Cyanidation Of Gold Clayore Containing Arsenic And Manganese. Issue, 2 17, 132-135. Maulana, A. 2017, Endapan Mineral. Yogyakarta Penerbit Ombak, Rosana, dkk. 2011. Mineralisasi Emas Epitermal Di Daerah Sako Merah Dan Manau, Ilmu-ilmu Hayati dan Fisik, 13 2, 235-247. Sayoga, R. 2014. Air Asam Penerbit ITB. Setiabudi, A. Hardian, R. dan Mudzakir, A. 2012. Karakterisasi Material Prinsip dan Aplikasinya dalam Penelitian UPI Press. Wahyudi, T. Tahli, L. dan Autanto, A. 2014. Karakterisasi Mineralogi Fisika Kimia Limbah Pegolahan Emas. Bandung Tekmira. ... Saat ini kebutuhan logam dasar dan logam mulia di Indonesia semakin meningkat. Pemanfaatannya yang semakin meningkat menuntut adanya eksploitasi akan sumberdaya mineral, khususnya logam mulia dan logam dasar Kilian, Abdullah, 2018. Usaha pertambangan, oleh sebagian masyarakat sering dianggap sebagai penyebab kerusakan dan pencemaran lingkungan. ...The mining and processing of people's gold produces impacts on the surrounding environment. Some residents immediately dumped the waste gold processing results into the environment. It is necessary to analyze the actual condition of mercury pollution based on a map of the level of pollution vulnerability to determine the size of the level of difficulty and the ease of polluted substances to affect surface water quality. The purpose of this study is to analyze the actual condition of the level of vulnerability of surface water pollution around the study area. The method used in this study is a survey method and field mapping, sampling methods purposive sampling, laboratory analysis methods, mathematical methods, and descriptive evaluation methods. Calculation of the level of vulnerability of surface water is the PCSM Point Count System Model method with 3 parameters, namely land use, slope, and rainfall. Overlay is done between the level of pollution vulnerability map with the actual conditions of pollution in the field. The results showed the study area has a level of vulnerability to surface water pollution in the study area including the classification of quite vulnerable and very vulnerable. Based on the results of the study it can be concluded that the total score of 36-43 included in the vulnerability class is quite vulnerable. The total score of 43 - 50 is included in the very vulnerable vulnerability class. Actual mercury levels in the study area were known in a row AP1-AP6 samples were 0,00046 mg / L; < mg / L; < mg / L; < mg / L; 0,00039 mg / L and <0,00006 mg / L. These results indicate that surface water in the study area has not been contaminated with mercury because its value is brought to all quality ÂEdy NursantoAfroza PratiwiEddy WinarnoRiria Zendy MirahatiBased on petrographic data, XRD, and fluid inclusions, it was interpreted that the quartz veins associated with low sulfide in Karangsambung area underwent 2 stages of system change from mesothermal system to epithermal system. This means showing the mineral potential contained in material, including on the Luk Ulo River where alluvial deposits are present. Therefore, what needs to be done next is to determine the composition of the material of the alluvial material in the Luk Ulo River, Kebakalan Village using XRD, and AAS so that its potential is known. This research is limited to mineral potential in XRD and AAS Au, Ag, and Cu in 2 samples, A sand and B rock. XRD results on samples A and B showed that quartz SiO2 had the highest percentage 30-50% compared to other minerals. While the results of the AAS tests showed that the highest Au and Ag contents were in sample B and Cu in sample A with total of g/ton Au, g/ton Ag, and g/ton Cu. Meanwhile, the lowest total Au and Ag were in sample A and Cu was in sample B which amounted to Au g/ton, Ag g/ton, and Cu g/ton. Yuliang LiJian LiuWei-sheng GuanThe extraction process of gold and silver from the gold clay ore containing arsenic and manganese was investigated. With the conventional technique, the leaching rates of gold and silver are and respectively. To eliminate the negative effects of arsenic and manganese on cyanidation and increase the gold and silver leaching rates, a novel catalyst was added. The content of the catalyst used in the process was 8 g per 500 g org sample, the sample size was 60 μm and the pH value was kept between 10 and 11. Leaching with the catalyst for 3–5 h under certain conditions, the gold leaching rate increased to over 90% and the silver leaching rate increased to 80%–90%. The catalyst can effectively liberate gold and silver from the enclosure of arsenic and manganese and the industrial experiment has great significance to the development and utilization of the gold clay ore containing arsenic and manganese. Keywordsgold ore-cyanidation-catalyst-gold-silver-leaching rateMineralisasi Emas Epitermal Di Daerah Sako Merah Dan ManauM F RosanaDkkRosana, dkk. 2011. Mineralisasi Emas Epitermal Di Daerah Sako Merah Dan Manau, Jambi. Bionatura-Jurnal Ilmu-ilmuR SayogaSayoga, R. 2014. Air Asam Tambang. Bandung Penerbit Material Prinsip dan Aplikasinya dalam Penelitian KimiaA SetiabudiR HardianA MudzakirSetiabudi, A. Hardian, R. dan Mudzakir, A. 2012. Karakterisasi Material Prinsip dan Aplikasinya dalam Penelitian Kimia. Bandung UPI Mineralogi Fisika Kimia Limbah Pegolahan EmasT WahyudiL TahliA AutantoWahyudi, T. Tahli, L. dan Autanto, A. 2014. Karakterisasi Mineralogi Fisika Kimia Limbah Pegolahan Emas. Bandung Tekmira.
Pemanfaatan Limbah Tambang Emas – Kehidupan manusia tidak terlepas dari bahan tambang seperti emas. Maka dari itu, aktivitas dari sektor pertambangan emas tidak pernah lepas dan tidak pernah berhenti. Melalui aktivitas tersebut yang nantinya akan membuat limbah dari kegiatan pertambangan akan menjadi tinggi. Kegiatan pertambangan sebenarnya bukan hanya untuk mendapatkan hasil tambang, tapi juga harus memperhatikan berbagai faktor alam akibat penambangan tersebut. Banyak masyarakat yang mengatakan dan berasumsi mengenai limbah pertambangan yang yang dapat merusak lingkungan. Namun sebenarnya limbah tersebut dapat diolah sehingga dapat dimanfaatkan oleh manusia. Limbah Pertambangan Emas Limbah atau dengan kata lain disebut dengan waste yang merupakan semua jenis bahan sisa hasil penambangan setelah melakukan proses produksi. Limbah ini akan berpotensi merusak lingkungan dan menjadi penyebab ketidakseimbangan ekosistem lingkungan alami pertambangan apabila limbah pertambangan tersebut tidak dikelola dengan baik. Oleh karena itu, limbah tersebut sudah selayaknya dikelola dengan lazim. Berbagai limbah yang merupakan residu dari kegiatan pertambangan biasanya berupa tailing, logam tanah jarang, lumpur, slag, dan lain sebagainya. Pemanfaatan Limbah Tambang Emas Berdasarkan perkembangan teknologi saat ini yang semakin handal, proses pada pengolahan limbah juga dapat dilakukan dengan lebih canggih untuk meningkatkan daya guna dari limbah yang diproses ulang tersebut. Namun, proses limbah juga harus dilakukan melalui kontrol kualitas yang sangat ketat untuk memastikan tidak ada kebocoran limbah yang akan merugikan lingkungan sekitar. Pada proses ini juga melibatkan pengawasan dari masyarakat sekitar dan pemerintah yang ikut serta berperan. Dalam kegiatan pertambangan emas, limbah hasil pertambangan dapat diolah untuk menghasilkan sebuah emisi yang minimal hingga tahap zero waste atau tidak ada yang terbuang sama sekali. Berikut ini contoh pemanfaatan limbah hasil dari kegiatan pertambangan 1. Sebagai Material Konstruksi Ini merupakan salah satu jenis pemanfaatan limbah yang paling umum digunakan yaitu sebagai bahan konstruksi. Adapun jenis limbah yang dapat diaplikasikan sebagai bahan konstruksi yaitu seperti lumpur, slag, taling, dan sebagainya. Dalam hal ini, slag dapat digunakan dalam pembuatan agregat beton dan sand blasting. Selain itu, lumpur halus dapat digunakan pada pembuatan konstruksi tambang yang terletak di bawah tanah agar menjadi lebih kuat. Sedangkan taling merupakan limbah hasil pertambangan yang dapat menghasilkan bahan konstruksi dengan aman. Adapun bahan konstruksi yang dapat dihasilkan lainnya yaitu berupa genteng, paving blok, dan batu bata. 2. Sebagai Pembangkit Listrik Limbah dapat dijadikan sebagai sumber tenaga listrik untuk limbah yang berbentuk gas seperti Sulfur dioksida SO2. Hal ini tidak hanya memberikan keefisienan dan meminimalisir pembuangan gas residu di lingkungan bebas, akan tetapi kegiatan ini juga dapat sebagai solusi atau alternatif untuk memperkecil biaya produksi listrik. 3. Sebagai Bahan Baku Pabrik Semen Ada pula jenis limbah B3 yang tersisa setelah dipisahkan dari bahan logam tambang yang berupa slug , bentuk yang seperti batu kaca dan biasanya mengandung sulfida, logam oksida, silikon dioksida, dan lain sebagainya. Biasanya limbah ini dapat dimanfaatkan sebagai bahan baku pembuatan semen jika sudah melalui proses pengolahan tertentu. 4. Penggunaan Kembali dengan Proses Daur Ulang Limbah hasil dari pertambangan dapat dilakukan proses daur ulang untuk dijadikan masker bekas yang kemungkinan besar memiliki logam berharga yang tertempel di masker tersebut. Selain itu, limbah ini juga bisa didaur ulang menjadi material lainnya seperti bag filter yang biasanya dilakukan dengan dengan teknik peleburan yang dikerjakan pada pabrik – pabrik tertentu.
pertambangan emas menghasilkan limbah logam berat cair seperti